THE IMPROVEMENT OF THE MATHEMATICAL MODEL OF A SELF-PROPELLED UNDERWATER CARGO CARRIER

  • A. M. Voitasyk
Keywords: underwater vehicle, useful cargo, gripper mechanism, mathematical model

Abstract

Developing and manufacturing operating samples of tethered remotely operated vehicle is expensive and laborious process. The expensive equipment used in their manufacture may be accidentally damaged during full-scale sea experiments. Thus the task of the previous computer simulation of the object of research is urgent with the aim to verify the performance of the proposed automatic control system.

In this paper modern approaches to the simulation of the dynamics of the motion of underwater vehicles with a cable connection are considered and the necessity in the development of specialized mathematical model of tethered remotely a self-propelled underwater cargo carrier with useful cargo is proved. The mathematical model of dynamics of movement a self-propelled underwater cargo carrier which intended for delivery, installation and removal of useful cargo on the sea bottom takes into account the design features of this type of underwater vehicles. 3D model of a gripper mechanism is designed for a self-propelled underwater cargo carrier with the use of useful cargo. The designed 3D model will be used during the design and preliminary configuration of the automated control system of underwater vehicle and its useful cargo.

References

1. Trunov, O. Improving the mathematical model of the dynamics for underwater vehicle with asymmetrical hulls [Text] / O. M. Trunov, O. O. Novosadovskiy, D. P. Kikhtenko // Наукові праці. Комп’ютерні технології. – 2014. – Vol. 237, Issue 225. – Pp. 90–98.
2. Fedorenko, R. Investigation into the Dynamics and Control of an Underwater Vehicle-Manipulator System [Text] / R. Fedorenko, B. V. Gurenko // ACM. – 2016. – 5 p. – Access Mode: DOI: 10.1145/3029610.3029639
3. Rua, S. Development of a low-level control system for the ROV Visor3 [Text] / S. Rua, R. E. Vasquez // International Journal of Navigation and Observation. – 2016. – Vol.
2016. – P. 1–12. DOI: 10.1155/2016/8029124
4. Garcia-Valdovinos, L. G. Modeling, Design and Robust Control of a Remotely Operated Underwater Vehicle [Text] / L. G. Garcia-Valdovinos, T. Salgado-Jimenez, M. Bandala-Sanchez, L. Nava-Balanzar, R. Hermandez-Alvarado, J. A. Cruz-Ledesma // International Journal of Advanced Robotic Systems. – 2014. – №. 11 (1). – P. 1–16. DOI: 10.5772/56810
5. Deng, W. Study on simulation of remotely operated underwater vehicle spatial motion [Text] / W. Deng, D. Han // Journal of Marine Science and Application. – 2013. – Vol. 12, Issue 4. – P. 445–451. DOI: 10.1007/s11804-013-1215-9
6. Fang, M. C. On the motions of the underwater remotely operated vehicle with the umbilical cable effect [Text] / M. C. Fang, C. S. Hou, J. H. Luo // Ocean Engineering. – 2007. – Vol. 34, Issue 8-9. – P. 1275–1289. DOI: 10.1016/j.oceaneng.2006.04.014
7. Костенко, В. В. Исследование влияния кабеля связи на маневренность телеуправляемого подводного аппарата [Текст] / В. В. Костенко, И. Г. Макеева // Подводные исследования и робототехника. – 2009. – №. 1 (17). – С. 22–27.
8. Вельтищев, В. В. Упрощенное представление гибкого кабеля переменной длины для моделирования динамики телеуправляемого подводного комплекса [Текст] /
В. В. Вельтищев // Вестник МГТУ им. Н. Э. Баумана. Сер. «Машиностроение». – 2012. –
С. 32–39.
9. Nuno Cruz, A. Autonomous Underwater Vehicles [Text] / A. Nuno Cruz // Open access peer-reviewed Edited Volume. – 2011. – 258 p. – Access Mode: DOI: 10.5772/923
10. Fernandes, Daniel de A. Output feedback motion control system for observation class ROVs based on a high-gain state observer: Theoretical and experimental results [Text] / Daniel de A. Fernandes, Asgeir J. Sorensen, Kristin Y. Pettersen, Decio C. Donha // Control Engineering Practice. – 2015. – № 39. – P. 90–102. DOI: 10.1016/j.conengprac.2014.12.005
11. Войтасик А. М. Сучасні задачі автоматизації керування підводним апаратом-роботом спеціального призначення [Текст] / А.М. Войтасик // Збірник наукових праць НУК. – Миколаїв: НУК, 2016. – №5 (467). – С. 53–59 (Для службового користування).
12. Blintsov, O. Development of the mathematical modeling method for dynamics of the flexible tether as an element of the underwater complex. Eastern-European Journal of Enterprise Technologies, 2017, Vol. 1/7, Pp. 4–14. (doi: 10.15587/1729-4061.2017.90291)
13. Blintsov, O. Devising a method for maintaining manageability at multidimensional automated control of tethered underwater vehicle. Eastern-European Journal of Enterprise Technologies, 2017, Vol. 1/9, Pp. 4–16. (doi: 10.15587/1729-4061.2017.93291)
14. Блінцов, В. С. Сучасні задачі автоматичного керування самохідною прив’язною підводною вантажною системою [Текст] / В. С. Блінцов, А. М. Войтасик // Збірник наукових праць НУК. – 2017. – № 3. – С. 49–55.
15. Блінцов В. С. Підводна роботизована технологія установки корисного вантажу на морське дно [Текст] / В.С. Блінцов, А.М. Войтасик // Міжнародний науково-виробничий журнал «Підводні технології. Промислова та цивільна інженерія» – К. : КНУБА, 2016. –
№ 4. – С. 50–59.
Published
2019-01-26